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Abstract. We report on the three-dimensional electron momentum densities (EMD) of graphite
and fullerene obtained by a so-called(γ, eγ ) experiment, i.e. the coincident detection of an
inelastically scattered hard x-ray photon with its recoil electron. A monochromatized flux of
1012 photons s−1 at 150 keV from the high-energy x-ray wiggler beamline of the ESRF was
directed onto thin graphite or fullerene targets. Comparison with a pseudopotential and a full-
potential linear muffin-tin orbital calculation in the case of graphite is made. Inclusion of electron
correlation via the Lam–Platzman correction is discussed. The experimental EMD of C60 shows
stronger electron delocalization in the ‘buckyball’ compared to graphite, which is supported by
theory.

1. Introduction

Traditionally, Compton scattering has been used to characterize the electron momentum density
(EMD) of valence electrons in solids [1]. The double-differential cross section describing the
energy and angular distribution of inelastically scattered x-rays is proportional to the so-called
Compton profile which is defined as a twofold integration over the EMDρ(p):

J (pz) =
∫ ∫

ρ(px, py, pz) dpx dpy (1)

wherepz is a function of both the scattered photon energy and the scattering angle. The
integration results from the lack of information about the momentum distribution of the
recoiling electrons. It can be avoided if the recoil electron is measured simultaneously with
the scattered photon. The corresponding triple-differential cross section for such a(γ, eγ )
experiment is proportional to the EMD itself. Since integration averages over large volumes in
momentum space, experiments which avoid this are desirable. If the momenta of the primary
and scattered photon in addition to that of the recoiling electron are fixed experimentally, the
initial electron momentum can be reconstructed in a unique way. The accuracy of a(γ, eγ )
experiment depends on the possibility of measuring the recoil momentum undisturbed by
multiple elastic scattering within the target. Since the mean free path of elastic scattering
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for 50 keV electrons in carbon is only about 85 nm [2], self-supporting targets are required
which are as thin as possible. Alternatives to(γ, eγ ) experiments are two-dimensional angular
correlations of annihilation radiation (2D-ACAR) [3]—which measure the momentum density
weighted by the positron wavefunction—and (e, 2e) experiments, where the projectile is an
electron. A recent review article about this kind of momentum spectroscopy focuses especially
on the electronic structures of different forms of solid carbon [4].

In the following we will describe experimental results for the EMDs of graphite and C60

which will be compared to theories based on a pseudopotential or linear muffin-tin orbital
calculation.

2. Experiment

The experiment was performed at the High Energy X-ray Scattering beamline ID15A of the
ESRF [5]. The photons from an asymmetric wiggler with seven periods and strong poles of
1.8 T at a 20.3 mm gap were monochromatized by a (220) bent Si crystal yielding 150 keV
photons (1ω = 0.74 keV FWHM) with an intensity of roughly 1012 photons s−1. They
entered an evacuated target chamber with an externally mounted intrinsic Ge diode at a
scattering angle of 140◦. At this angle the scattered photon energy was about 100 keV. The
50 keV recoil electrons were measured with a two-dimensional position-sensitive detector
(PSD) consisting of 16× 16 individual photodiodes. Figure 1 shows the arrangement of the
initial and scattered photon momentak andk′, and the recoil momentump′ from which the
initial electron momentump = k′ + p′ − k is obtained. The centre of the PSD was placed in
the direction ofq0, the momentum-transfer vector for the scattering of photons by electrons
at rest. The surface normal of the target foils was parallel toq0. A momentum transfer of
q0 = 63 au guaranteed the validity of the impulse approximation. Detailed Monte Carlo (MC)
calculations of the momentum resolution of the(γ, eγ ) spectrometer included the correlated
scattering due to the triple-differential cross section, the solid angle and energy resolution of the
Ge diode, the energy width of the primary beam and the beam spot at the target. The variance
vector for the momentum uncertainty in the three Cartesian directions ofp = (px, py, pz)

wasσp = (0.18, 0.43, 0.20) au. Here,pz is parallel to the momentum transferq0, px lies in
the (k,k′) scattering plane andpy is perpendicular to it. Emission patterns of the recoiling
electrons were analysed by the PSD with a granularity of about 0.14 au in thepx-direction and
0.28 au in thepy-direction. Thus the variance in thepy-direction extended over two pixels
and in thepx-direction over one pixel. Time correlation spectra showed very few chance
coincidences, which nevertheless were taken into account. The overall coincidence rate was
about 2 Hz. A total of 4×105 coincidence events were accumulated for each of the two targets.
One of them was a 5µg cm−2 thin graphite foil made by laser plasma ablation. The ejected
carbon atoms were deposited on a thin betaine film which had a fine crystalline-like structure
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Figure 1. The experimental set-up: Ge:
Ge diode; T: target; PSD: position-sensitive
electron detector.
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that acted as a replica for the graphite film and guaranteed a high mechanical stability. Finally,
the betaine film was dissolved in water and the foil mounted on an aluminium frame. Electron
diffraction revealed graphite-like Debye–Scherrer rings indicating isotropically distributed
crystals with no texture [6]. The other target was 23µg cm−2 purified C60 evaporated at
500 ◦C on a 3µg cm−2 graphite carbon backing. With mass densities of 2.3 g cm−3 for
graphite and 1.7 g cm−3 for fullerite one obtains for the graphite target a thickness of 22 nm
and for the other target 130 nm fullerite on a backing of 13 nm graphite. Historically, the
first C60 clusters were also made by laser vaporization but followed by cooling in a helium
supersonic jet [7]. We stress that in the following, neither the multiple-scattering calculation
nor the evaluation of composite EMDs for fullerene on a graphite backing depend on the
knowledge of the mass density.

3. Theory

We will compare experimental EMDs with those obtained from theory. We have simulated
the whole experiment by a master MC code which, in addition to the experimental resolution
described in section 2, incorporated the theoretical EMD, the elastic multiple scattering of
the emerging electrons and the granularity of the PSD. The treatment of multiple scattering
follows closely that of Salvatet al [8]. Finally the MC result has been normalized to the total
number of experimental coincident events within an integration volume withpx = ±1.4 au,
py = ±2.5 au andpz = ±6.0 au. Though both targets should generate isotropic scattering, we
cannot integrate the experimental results spherically over the momentum since the momentum
resolutions for the Cartesian components ofp are different and multiple scattering influences
thepx- andpy-components more strongly than those in thepz-direction. We thus present in
the following specific cuts through the EMD while comparing with theory. The theoretical
distributions are based on either an empirical pseudopotential (PP) method [9] with potential
parameters from Reedet al [10] or the full-potential linear muffin-tin orbital (FP-LMTO)
method [11]. Both calculations were performed within the general scheme of density functional
theory (DFT). In the FP-LMTO method, a number of non-overlapping muffin-tin spheres are
introduced; the potential is expanded in spherical harmonics inside the spheres and Fourier
transformed in the interstitial region. It is thought that this treatment is superior to the LMTO
method within the atomic sphere approximation (ASA) [12]. In addition to the problem of
overlapping Wigner–Seitz (WS) spheres for the calculation of EMDs [13], the rather open
graphite structure yields discontinuities of the potential at the WS radius which forces the
introduction of fictitious empty spheres at interstitial sites [14, 15]. All this is avoided in the
FP-LMTO method.

Both theories hold for the valence electrons in graphite and have been spherically averaged
for comparison with experiment. In the case of C60 a molecular calculation based on the DFT
was performed in the local density approximation (LDA) with a Vosko–Wilk–Nusair local
potential [16]. Both experimental Compton profile measurements and theory for fullerene [17]
have shown that the solid-state effect of macroscopic C60 targets (fullerite) is extremely weak
and this has therefore been neglected. In all cases a 1s2 atomic core from Roothaan–Hartree–
Fock wavefunctions has been added [18].

It is common to all of the calculations cited above that the electron–electron interaction
is approximated by a more or less refined version of the exchange–correlation potential in the
effective single-particle Schrödinger equation. But it has also been known for a while that
EMDs obtained from the Kohn–Sham equations of DFT are inaccurate due to a change of
the occupation number density1N = Nia − Nf [19–21]. (Nia andNf are the properly
normalized occupation numbers for a homogeneous interacting and non-interacting free-
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electron gas, respectively.) WhileNf is different from zero only below the Fermi momentum
pF ,Nia also populates states abovepF . As discussed first by Lundqvist [22], a single-particle
hole couples to the plasmon, resulting in a quasiparticle called a plasmaron whose lifetime
broadening in the vicinity of the Fermi momentum yields tails abovepF . The resulting
correction1ρLP to the EMD [19,23]

1ρLP (p) = 1

4

∫
V

ρ(r)1N [ρ(r)] d3r (2)

accounts for electron correlation.1ρLP (p) is the so-called Lam–Platzman correction. For
the electron densityρ(r) we used the valence density determined from x-ray diffraction data
obtained for natural single crystals of graphite [24] supplemented by the 1s2 core density [18].
The factor 1/4 in equation (2) results from the fact that the integration has been extended
over the volumeV of the unit cell of graphite which contains four carbon atoms. The
occupation number densityNia of the interacting electron gas depends both on the Fermi
momentumpF and the renormalization constantZ which is a measure of the spectral weight
of the plasmaron [25]. For the calculation of the correction term1ρLP , both depend on
the average electron–electron spacingrs = (3/(4πρ(r))1/3: pF = (9π/4)1/3r−1

s , and for
Z = Z(rs) we used equation (36a) of Farid et al [26] in connection with an analytical
representation ofNia (equation (37a)). Figure 2 shows1ρLP (p). At p = 0 the correction
1ρLP (0) = −1.2 × 10−2 au−3 amounts to 3.5% of the graphite EMD. In order to get an
impression of the relative strength of this correction in comparison with that for metals, we
have calculated1ρLP (0) for the constant valence electron density in some representative
metals. For this case one obtains1ρLP (0) = 1N(0)�/(4π3) where1N(0) is the difference
between the occupation number densities at zero momentum and� is the atomic volume.
Using the simple approximation1N(0) = −9(1− Z)/64 [27] we have calculated1ρLP (0).
The results are shown in table 1.

To obtainrs we have used the valence electron densityρout of Moruzziet al[28]. Compared
to the value for graphite1ρLP (0) = −1.2× 10−2 au−3 (see figure 2), the LP correction for
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Figure 2. The Lam–Platzman correction1ρLP for graphite and fullerene as a function of the
electron momentump.
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Table 1. Values for the Lam–Platzman correction to the momentum densityρ(0) and Compton
profile J (0) for different metals. The parameters for the Wigner–Seitz radiusrs and the atomic
volume� have been taken from reference [28] and for the renormalization constantZ from
reference [26].

rs � 1ρLP (0)× 102 1JLP (0)× 102

(au) Z (au−3) (au−3) (au−1)

Li 3.07 0.696 132 −4.6 −3.3
Be 1.85 0.780 53 −1.3 −2.6
Na 3.67 0.663 228 −8.7 −4.4
Al 2.12 0.759 110 −3.0 −4.6
Cu 1.95 0.772 77 −2.0 −3.6

metals seems in general to be considerably larger. In addition we note that one obtains the LP
correction for Compton profiles1JLP (0) atpz = 0 if 1N(0) is replaced by

1J(0) = −9

(
π

12

)5/3

(1− Z)r−2
s .

The corresponding values1JLP (0)are also shown in table 1. Except for sodium, the calculated
values for1ρLP (0) agree reasonably well with those given by Papanicolaouet al [29].
Comparing1ρLP (0) and1JLP (0) it is evident that the LP correction for EMDs is more
sensitive to the specific material than that for Compton profiles. This is mainly due to a
compensating effect: while an increasingrs letsZ deviate more strongly from unity, ther−2

s -
dependence of1JLP (0) reduces the LP correction. It even compensates for the influence of
the atomic volume�, which is quite large for rather open structures (bcc) like those of the
alkali metals.

The difference1N(0) of the occupation number densities becomes larger with decreasing
electron densityρ(r). Since the average kinetic energyT of the electrons increases as the
square of their average inverse spacing (T ∝ p2

F ∝ r−2
s ), while their Coulomb energy increases

only∝ r−1
s , an electron gas behaves more ‘freely’ with decreasingrs , i.e. increasingρ(r) [30].

It is for this reason that we have used the experimentally determined electron density [24] in
order to make the description, especially that for regions of low density, as accurate as possible.
Since the electron density of fullerene is close to that of graphite—the ‘double’ and ‘single’
carbon bond lengths in C60 are 1.391 Å and 1.455 Å, and thus very similar to the in-plane
bonding distance of 1.421 Å in graphite—we have applied the same correction to fullerene.

4. Experimental results and discussion

In figure 3 theoretical momentum densities which have been spherically averaged are plotted,
i.e. the pseudopotential calculation [9] and the FP-LMTO approximation in the case of graphite
and the molecular EMD for C60 [16]. In the latter case,ρ(p) has also been normalized to
six electrons. The Lam–Platzman correction1ρLP has been added to all three EMDs. For
comparison with experiment, theoretical data have been used in the MC simulation of the
experiment as described in section 2. In figure 4 one-dimensional cuts through the 3D-EMD are
shown in comparison with theory. Figure 4(a) applies toρ(px, 0, 0), figure 4(b) toρ(0, py, 0)
and figure 4(c) toρ(0, 0, pz). Though the target is spherically symmetric, both the momentum
resolution and multiple scattering influence the EMD for the given directions differently. Thus,
if an isotropic theory describes the data correctly, this is an indirect indication that our MC
simulation works appropriately. The solid curves in figure 4 are the FP-LMTO results and
the broken curves those from the pseudopotential (PP) calculation. It is evident that the PP
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Figure 3. Spherically averaged theoretical EMDs for graphite, i.e. the pseudopotential (dashed
curve) or FP-LMTO calculation (solid curve), and for fullerene (dash–dotted curve).

calculation yields considerably lower densities at small momenta and slightly enhanced values
at large momenta compared to the FP-LMTO method. This holds for all three Cartesian
momentum components of figure 4 which, according to the resultingp2-weighting of the
isotropic EMD, ensures the correct normalization for both theories. A slight asymmetry of
the theoretical curves results from the pixel structure of the detector system which, of course,
has been incorporated in our MC code. The comparison of the two theories in figure 3 shows
that the dip in the EMD at small momenta which results from the contribution ofπ -electrons
is more pronounced in the PP than in the FP-LMTO calculation. Smeared with resolution
and multiple-scattering effects, the stronger dip yields a flatter EMD at small momenta for the
PP than for the FP-LMTO calculation. It is evident from figure 4 that the FP-LMTO method
describes the experimental data better than the PP method. As stated by Lou Yongminget al[9]
the dip of the PP calculation was quite sensitive to potential parameters. They could even be
adjusted in such a way that the dip completely disappeared. A slight dip in the experimental
data forρ(0, 0, pz) found in earlier(γ, eγ ) experiments [31] could not be verified. For
both calculations the LP correction has been added, though its contribution is considerably
smaller than the error bars of figure 4. We emphasize that the comparison between theory and
experiment in figures 4(a)–4(c) has not been done by means of a separate fit, but is the result
from the global normalization described earlier.

As stated in the introduction, 2D-ACAR measures the momentum density weighted by
the positron wavefunction. In a layered structure like graphite the positron localization in the
interlayer region is very pronounced; see figure 1 of Puska and Nieminen [3]. Since weak
interlayer bonding is primarily due toπ -electrons, positron annihilation will preferentially
occur with this type of electron. In figure 5 2D-ACAR measurements on highly oriented
pyrolytic graphite (HOPG) [32] are compared to the angular correlation dataρ2D with

ρ2D(px, py) =
∫
ρ(px, py, pz) dpz (3)

from the (γ, eγ ) experiment. It is the p character of theπ -electrons which reduces the
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Figure 4. The experimental EMD of graphite (error bars) for the cutsρ(px, 0, 0) (a),ρ(0, py, 0) (b)
andρ(0, 0, pz) (c). The solid curves show the FP-LMTO calculation and the dashed curves the PP
calculation.

momentum density at small momenta. Even if the strong reduction of the ACAR density
along thec-axis in HOPG were to be spherically averaged and folded with our resolution, a
prominent reduction of the EMD at zero momentum would occur, in contrast to experimental
observation. This clearly demonstrates the difference between the ACAR and(γ, eγ )methods
in investigating EMDs. In addition, one can see from figure 5 how the EMD intensity can be
affected at large momenta: whereasρ2D

ACAR nearly vanishes forp > 1.3 au, the EMD from the
(γ, eγ ) experiment still has considerable intensity; see also figure 4.

The most remarkable difference between the EMDs of graphite and C60 in figure 3 is
the increased density of C60 compared to graphite at small momenta. The bending of the
graphite basal planes to form the ‘buckyball’ induces a hybridization of wavefunctions with
s character with those of theπ -electrons, which results in a transfer of electron density from
the interlayer region into the shell of the C60 spheres [33,34]. (Nevertheless, bonding is closer
to the sp2 hybrids of graphite than to the sp3 bonding in diamond [35].) Consequently, a
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Figure 5. Angular correlation data in the case of HOPG from ACAR [32] (a) and from the(γ, eγ )
experiment (b).
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Figure 6. The experimental coincident Compton profileJcoinc (dots) compared to the molecular
C60 calculation.

DFT calculation in the LDA revealed that the electron density for most of the 120 bands in
fullerene showed a larger overlap among the nearest-neighbour carbon atoms in the C60 ball
compared to graphite [17]. This kind of delocalization results apparently in an enhancement
of the EMD at small momenta. A comparison of one-dimensional cuts through the EMD
of fullerene with either the FP-LMTO or the molecular C60 calculation showed that the
experiment could not distinguish between the two theories within the error bars. To improve
the statistics we have summed all coincidence events for a constantpz-value. The resulting
coincident Compton profileJcoinc(pz) is not identical to a non-coincident one due to the
limited integration range in thepx- andpy-directions, but besides the increase in statistics it
also has the advantage that measurements in coincidence provide photon spectra free from
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Figure 7. The relative difference1Jcoinc for the FP-LMTO calculation for graphite (open circles)
and the C60 calculation (dots).

any background radiation. Figure 6 shows the experimentalJcoinc as a function ofpz (data
points) together with the corresponding molecular fullerite calculation. The agreement is at
the percentage level. To enlarge possible differences, we have plotted in figure 7 the relative
difference1Jcoinc = (Jexp − Jtheor )/Jexp × 100 whereJexp is the experimental coincident
Compton profile andJtheor the corresponding theoretical profile. Open circles are from the
FP-LMTO calculation, while full circles represent the C60 calculation. Though the relative
difference is rather small, the experiment clearly favours the C60 calculation. We mention that
recent Compton profile data obtained from the measurement of the binary-encounter electron
peak in 18 MeV C6+/C60 collisions [36] did not reveal any difference between a C60 and a
graphite Compton profile. We emphasize that the comparison of figure 7 and figure 6 relies on
the fact that the graphite target, in particular, had spherically distributed crystallites. This is due
to the preparation by laser ablation; evaporated films show a more HOPG-like structure [6].
This is also different from the case for macroscopic samples of graphite powder, where a
strong tendency ofc-axis orientation of the small platelets introduces a texture. It is for this
reason that Moscoviciet al [17] compared Compton profiles of fullerene with that of graphite
along thec-axis, though about 50% of this difference is expected to be due to the anisotropy
of HOPG.

5. Conclusions

We have measured the 3D electron momentum densities of graphite and fullerene. The graphite
data are compared to a pseudopotential and a FP-LMTO calculation, both based on the general
idea of the DFT. The FP-LMTO calculation shows better agreement with experiment, especially
since it emphasizes the p-electron contribution at small momenta of the EMD less. The
influence of electron correlation via a Lam–Platzman correction is discussed and found to
make a negligible contribution. A comparison of the graphite and fullerene EMDs confirms a
theoretical prediction of stronger electron delocalization in the ‘buckyball’ than in graphite.
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of the Universiẗat München for the fullerene target. We thank Dr M Vos from the Australian
National University for making the C60 calculation available to us. ASK acknowledges the
support from the Australian Research Council and ChM a grant from the ESRF. This work was
supported by the Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie,
Contract Nos 05 5W MAAI and 05 ST8 HRA.

References

[1] Cooper M J 1985Rep. Prog. Phys.48415
[2] Riley M E, MacCallum C J and Biggs F 1975At. Data Nucl. Data Tables15443
[3] Puska M Y and Nieminen R M 1994Rev. Mod. Phys.66841
[4] Vos M, Kheifets A S, Weigold E, Canney S A and Kurp F F 1998J. Electron Spectrosc. Relat. Phenom.87231
[5] Suortti P and Tschentscher T 1995Rev. Sci. Instrum.661798
[6] Dollinger G, Maier-Komor P and Mitwalski A 1991Nucl. Instrum. MethodsA 30379
[7] Kroto H W, Heath J R, O’Brien S C, Curl R F and Smalley R E 1985Nature318162
[8] Salvat F, Martinez J D, Mayol R and Parellada J 1986Comput. Phys. Commun.4293
[9] Lou Yongming, Johansson B and Nieminen R M 1991J. Phys.: Condens. Matter3 1699

[10] Reed W A, Eisenberger P, Pandey K C and Snyder L C 1974Phys. Rev.B 101507
[11] Weyrich K H 1988Phys. Rev.B 3710 269
[12] Skriver H L 1984The LMTO Method(Berlin: Springer)
[13] Singh A K and Jarlborg T 1985J. Phys. F: Met. Phys.15727
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